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Limit cycles in the presence of convection:
a first-order analysis
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We consider a diffusion model with limit cycle reaction functions. In an unbounded
domain, diffusion spreads pattern outwards from the source. Convection adds instability
to the reaction–diffusion system. We see the result of the instability in a readiness to create
pattern. In the case of strong convection, we consider that the first-order approximation
may be valid for some aspects of the solution behaviour. We employ the method of Rie-
mann invariants and rescaling to transform the reduced system into one invariant under
parameter change. We carry out numerical experiments to test our analysis. We find that
most aspects of the solution do not comply with this, but we find one significant charac-
teristic which is approximately first order. We consider the correspondence of the Partial
Differential Equation with the Ordinary Differential Equation along rays from the initia-
tion point in the transformed system. This yields an understanding of the behaviour.

KEY WORDS: reaction, diffusion, convection, limit cycle, Schnakenberg

1. Introduction

Reaction–diffusion systems are of interest because of the many applica-
tions in biology. It is the formation of pattern that is the major motivation
for study. For this reason, reaction mechanisms which can produce limit cycles
are particularly significant. Schnakenberg [1] found the chemical pathway which
yields the algebraically simplest set of functions which can produce a limit cycle.
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We employ these functions in a system with diffusion, representing Brownian
motion. We add convection, which destabilises the system: pattern is formed
more readily.

We carry out an extended first-order analysis, simplifying and rescaling the
system to reduce it to its essential form. From this we see clearly how to identify
first-order attributes of the generated pattern. We carry out numerical experi-
ments to discover these aspects. We find that most attributes have a strong sec-
ond-order component. Then we interpret the first-order result with the help of
some more theory.

2. Limit cycles

We suppose that some form of chemical reaction is the underlying basis
for biological pattern formation. The Schnakenberg reaction is a simple chemical
system that is known to have cyclic behaviour. This is a self-catalysing chemical
reaction, also known as an autocatalytic reaction. Limit cycle solutions can exist
in this type of two-species system (see Hanusse [2] and Tyson and Light [3]). The
reaction functions are

f = µ − uv2,

g = uv2 − v, (1)

with µ the constant, positive source term.
If the reaction is homogeneous, an Ordinary Differential Equation (ODE)

is an appropriate model:

u′ = f,

v′ = g. (2)

We note that this is a one-parameter model: µ determines the behaviour of the
system.

We examine the behaviour of the model. There is one finite steady state:
(1/µ, µ). With a linear stability analysis we see that the steady state is stable for
µ > 1, and unstable for µ < 1. Furthermore, in the range 3 − 2

√
2 < µ2 <

3 + 2
√

2 (0.4 � µ � 2.4), there will be oscillatory behaviour.
The linear theory cannot tell all aspects of the system. Merkin et al. [4]

found limit cycle behaviour in the range 0.90032 ≈ µ� < µ < 1 . We are inter-
ested in this behaviour (see figure 1). The steady state is where the two nullclines
(the broken lines in the diagram) cross. The circled points on the diagram show
the start of the phase plane trajectories. The phase curves spiral out from the
steady state to meet the limit cycle (the broad loop in the diagram). The trajec-
tories starting high on the v-axis spiral into the limit cycle. There is a separatrix
below which the limit cycle is no longer the attractor and all trajectories head
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Figure 1. Phase space for the limit-cycle reaction, given by numerical solution of (2). The phase
curves spiral out from the steady state to meet the limit cycle (the broad loop). The trajectories start-
ing high on the v-axis spiral into the limit cycle. There is a separatrix below which the limit cycle
is no longer the attractor and all trajectories head off to (u, v) = (∞, 0). Solid curves starting with
circles are the trajectories. The dashed line is the uv = 1 nullcline, the dash-dotted is uv2 = µ. The
parameter here is µ = 0.95.

off to (u, v) = (∞, 0), a globally stable steady state. The special value µ� occurs
when the limit cycle grows so much that it meets the separatrix, and then the
limit cycle breaks.

3. Diffusion and convection

Biological pattern formation is by definition spatially differentiated [5].
There are many models for this. We choose the simplest case: one spatial
dimension and some diffusion. The diffusion corresponds to the averaged gross
effect of random motion, and with passive movement is equivalent to Brownian
motion.

We add a convective term to the system. A change of coordinates can be
employed to remove the convection on one of the species. In the case where the
convection is the same strength on both, it is completely removable. So we con-
sider different convection on each species:

ut = ε1uxx + f,

vt = ε2vxx − γ vx + g, (3)

with f and g as in (1) and ε1, ε2 and γ positive constants.

4. Pattern formation

We have reaction functions that have limit-cycle behaviour and convection
which is known to drive instability. The appearance of pattern is then to be
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Figure 2. Pattern found for a diffusion system with convection and limit-cycle reaction kinet-
ics (3). The initial disturbance propagates and becomes pronounced, forming a regular pattern with
aligned oscillations. The propagation is linear, forming a V -shape. There is a difference in behav-
iour between the left and right sides of the pattern: the angle of alignment and the frequency of
the pattern is different on either side. This is a numerical solution using NAG D03PCF, plotting
species u with γ = 1, ε1 = 0.01, ε2 = 0.01, µ = 1.1. The reactants are initially at steady state:
(u, v) = (1/µ, µ), with a small disturbance at x = 0. The boundaries are held at zero derivative:
ux , vx = 0.

expected, although the form might be more difficult to predict. Satnoianu et
al. [6] studied this system (3) previously and found that periodic behaviour is
emergent in the system over a broad parameter range.

In the numerical experiment, we start at the steady state (1/µ, µ), except for
a small disturbance at x = 0. We try to simulate a boundless environment – to
this end we find zero derivative boundary conditions the most effective. The ini-
tial disturbance propagates and becomes pronounced, forming a regular pattern
with aligned oscillations. The propagation is linear, forming a V -shape. We see a
difference in behaviour between the left and right sides of the pattern (figure 2):
the angle of alignment and the frequency of the pattern is different on either
side. This pattern is the main focus of our study.

5. First-order analysis

We approximate the full system (3) with the first order differential system:

ut = f,

vt = −γ vx + g. (4)

We look for the characteristic directions, also known as Riemann invariants, of
this first order system. We make a change of variables into this new canonical
coordinate system:
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ξ = t − x

γ
, η = x

γ
. (5)

This transformation has one limitation: γ may not be equal to zero. The new
coordinates becomes undefined for this value, so there is a possible discontinuity
in the system behaviour as convection is introduced. This distances our analysis
from the standard reaction-diffusion systems used in pattern formation.

The ordering (x, t) → (ξ, η) implies a reflection in the plane, and so left and
right are transposed in the canonical system. The transformed first-order differ-
ential system (4) is as follows:

uξ = f,

vη = g. (6)

We have succeeded in reducing the system by one differential term and separated
the independent variables, each now having their own equation. Further, we have
removed the parameter γ through the implicit rescaling. Note that the method
of characteristics unfortunately has not separated the dependent variables in the
reaction functions in this case.

Rescaling is one of the simplest and strongest tools available: the technique
can reveal insights into system behaviour [7]. We introduce rescaled variables as
follows:

u = ū

k
, v = kv̄, µ = kµ̄s. (7)

This results in transformed reaction functions:

f = kf̄ ,

g = kḡ, (8)

with the transformed functions defined in the natural way. Now we consider the
differential form (6). We choose suitable rescalings for the independent variables:

ξ = ξ̄

k2
, η = η̄. (9)

The transformed canonical equations are:

ūξ̄ = f̄ ,

v̄η̄ = ḡ. (10)

If we choose k = µ the system is now invariant under the parameter µ (µ̄ = 1).
We take the pattern found previously (figure 2) and apply the above coordi-

nate change and rescaling. This results in a clearer view of the system behaviour
(figure 3).
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Figure 3. Canonical form of pattern. This is a diffusion system with convection and limit-cycle
reaction kinetics (3), shown in transformed variables. There is little qualitative difference from the
original coordinate system, but the pattern is clearer. The dash-dotted lines mark the edge of the
pattern. The dashed lines mark the measured angle of the oscillation. This is a numerical solution
using NAG D03PCF, plotting species ū with γ = 1, ε1 = 0.01, ε2 = 0.01, µ = 1.1. The reactants
are initially at steady state: (u, v) = (1/µ, µ), with a small disturbance at x = 0. The boundaries
are held at zero derivative: ux , vx = 0.

6. Numerical experiments

We wish to see to what extent the behaviour of the full system (3) is an effect of
only the first-order system (4). To this end, we choose strong convection, relative to
the diffusion: γ � ε1, ε2. We choose the rescaling parameter k = µ, which rescales µ

to 1. We carry out the simulation in the original system, with a range of values of µ.
We take the results, transform them into a canonical coordinate system and then

rescale them, producing a system theoretically invariant to µ, to first-order (10). We
examine aspects of the system: the edges of the pattern, the alignment of the waves,
their amplitude and frequency. The transformed pattern and some of these measure-
ments are shown in figure 3.

We collate the measurements (figure 4) and analyse the behaviour of the pattern.
If any aspect of the pattern is a first-order effect, then we expect it to remain constant
under the transformation. Our results show various responses to variation of µ. Of
all the measurements we make, only the edge angles of the pattern could possibly be
close to constant.

We examine the behaviour of the edge angle in more detail, exploring other
values for the diffusion constants ε1 and ε2 (figure 5). We see that the right edge
angle is roughly increasing with µ, perhaps linearly, and so cannot be a con-
stant attribute. The left edge angle is more difficult to characterise. However, for
smaller amounts of diffusion the range of values becomes quite small. We claim
that this curve is approximately constant. Since we know the system is actually
second-order, we can consider this specific behaviour to be approximately first-
order.
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Figure 4. Pattern behaviour as a function of the reaction parameter: measurable aspects of the pat-
tern collated over a large range of µ. The lighter, solid lines are measurements from the left side
of the pattern (right in the canonical coordinates), the darker, broken lines from the right. Pattern
is found for the diffusion system with convection and limit-cycle reaction kinetics (3). Numerical
simulations were run at 0.1 intervals of µ, using NAG D03PCF, with γ = 1, ε1 = 0.01 and
ε2 = 0.01. Measurements were taken in the transformed system. The reactants are initially at steady
state: (u, v) = (1/µ, µ), with a small disturbance at x = 0. The boundaries are held at zero deriva-
tive: ux , vx = 0.

Figure 5. Edge behaviour over a range of diffusion. The right edge is clearly increasing, perhaps lin-
early. The left edge has a limited range, reducing with ε1 and ε2. Pattern is found for the diffusion
system with convection and limit-cycle reaction kinetics (3). Numerical simulations were run at 0.1
intervals of µ, using NAG D03PCF, with γ = 1. Measurements were taken in the transformed sys-
tem. The reactants are initially at steady state: (u, v) = (1/µ, µ), with a small disturbance at x = 0.
The boundaries are held at zero derivative: ux , vx = 0.
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7. Correspondence of the PDE with the ODE

We consider a curve in ξ, η space parameterised by s. We consider rays
emanating from the origin: η = s = aξ . This gives us the derivative along the
curve:

du

ds
= 1

a

∂u

∂ξ
+ ∂u

∂η
, (11)

dv

ds
= 1

a

∂v

∂ξ
+ ∂v

∂η
.

Since (u, v) is a solution of the transformed first-order equation (6), we can
substitute some of the partial derivatives.

We make a strong assumption: uη = 0 = vξ . This is a substantial restriction
to the system. However zero is the natural, or first, value to consider for these
terms. The need for this assumption to fully determine the system arises because
we are trying to examine the system without the effect of the boundaries.

This reduces the first-order PDE to the ODE system:

a
du

ds
= f,

dv

ds
= g. (12)

We rescale the variables similarly to before, to remove the constant a. We
set u = û/

√
a, v = √

av̂, µ = √
aµ̂, s = ŝ. This recovers the natural ODE:

dû

dŝ
= f̂ ,

dv̂

dŝ
= ĝ. (13)

This gives the correspondence between µ̂ in the rescaled ODE and µ in
the PDE together with the ray angle a (µ = √

aµ̂). The range of existence of
the limit cycle in the ODE (µ� < µ̂ < 1) is then used to predict the range of
existence of the stable oscillations in the PDE:

µ2 < a < a� ≡ µ2

µ2
�

, (14)

for the ray angle a in the canonical coordinate system. In the original coordinate
system (x, t) we have:

1 + µ2
�

µ2
≡ h� < h < 1 + 1

µ2
, (15)
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where h is the gradient of the ray, t = hx. For our example value (µ = 1.1) we
have 1.67 � h � 1.82.

For µ̂ = 1 we have the onset of the instability in the ODE, and we can
expect this behaviour to remain fixed in the PDE. We do indeed see a close
match between the predicted value for the onset of the pattern, h = 1 + 1/µ2,
and the actual gradient of the initiation of the pattern (figure 6).

The other bound is almost within the transition behaviour of the onset, and
certainly a long way from the other edge. As µ̂ increases beyond µ� we still have
oscillatory behaviour in the system, which suggests that the lower ODE bound is
more flexible in the PDE system. We have previously observed [8] that the exis-
tence of this controlled type of behaviour is likely to be a result of the bounds
introduced by Schnakenberg [1] to constrain the trajectories into a limit cycle. It
seems that these bounds apply more generally in the extended system.

In the original coordinate system we see that this prediction corresponds to the
left edge of the pattern (in canonical coordinates this is the right edge). This was the
aspect of the pattern that gave the strongest indication of being a first-order effect in
our experiments. In our rescaled canonical system, µ̄ = 1 and so a = 1, which is π/4
radians as an angle. If we return to the experiment (figure 5), we see that this value,
roughly 0.785, is a good approximation to our results.
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Figure 6. ODE correspondence. The lines indicate the range of existence of the limit cycle in
the ODE, mapped onto the PDE by considering rays from the origin in the canonical system.
The lighter, solid line is at the Hopf bifurcation point in the ODE, and very close to the onset of
the PDE pattern. The pattern is found for a diffusion system with convection and limit-cycle reac-
tion kinetics (3). This is a numerical solution using NAG D03PCF, plotting species u with γ = 1,
ε1 = 0.01, ε2 = 0.01 and µ = 1.1. The reactants are initially at steady state: (u, v) = (1/µ, µ), with
a small disturbance at x = 0. The boundaries are held at zero derivative: ux , vx = 0.

8. Discussion

We have been fortunate to find the initiation of the pattern as a first-order
effect. Of all the attributes of the ODE, this is the most clear and significant.
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Finding an exact formula for this angle justifies the extensive analysis, and the
close correspondence to the pattern formed by the PDE is pleasing.

As for the other edge: the theoretical prediction was weak and the
behaviour here is not first-order from computer experiments. We should also
note that the behaviour to the left of the left edge also corresponds to the first
order analysis, in that it remains stable. In contrast, we would expect rays from
the origin to the right of the right edge to be highly unstable, in the first-order
analysis.

The main significance of the result is that without this work we could not
distinguish clearly between the two edges of the pattern. A second-order lin-
ear stability analysis would not readily differentiate between the two. The use of
numerical simulations to establish the analytical result is absolutely vital.

The other measurements concern the established pattern. We have seen that
almost every measurable aspect of the pattern does not correspond to first-order
behaviour. The behaviour within the pattern is far from the steady state and so
clearly non-linear.

Much of the theoretical analysis here relies on the rescalability of the
reaction functions. This quality does not generally hold for less algebraically neat
functions, however an approximation could be considered in this case.
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